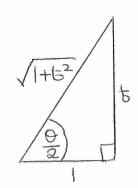
5-formulae

0



Let $t = ton\left(\frac{\Theta}{a}\right)$		6988
Use doub	le angle form	ulaeto prove:
$\sin \Theta = \frac{2b}{1+b^2}$	$\cos \Theta = \frac{1-6^2}{1+6^2}$	$bon \Theta = \frac{2b}{1-b^2}$

Example Pg 88 (Finding values) Suppose tan $(\underline{\Theta}) = 3,0 < \Theta < 2\pi$, then using the formulae above, we can show that: $\sin \Theta = \frac{3}{5}, \cos \Theta = -\frac{4}{5}, \tan \Theta = -\frac{3}{4}$ Θ is in the 2^{nd} (topleft) quadrant as only Θ is positive

Example (Prove Identities) pg89 Prove $60n\left(\frac{0}{2}\right) = \frac{500}{5ec0+1}$ RHS = $\frac{\left(\frac{25}{1-5^2}\right)}{\left(\frac{1}{(1-5^2)}\right)+1} = ...=LHS$ $\left(\frac{1}{(1-5^2)}\right)+1$ Right Simplify

Example PS 89 (Prove Identities) Use substitution $b = bon(\frac{x}{2})$ to prove $\frac{sinx-cosx+1}{sinx+cosx-1} = \frac{sinx+1}{cosx}$ LHS = $\frac{\binom{2t}{1+6^2}}{\binom{1}{1+6^2}} - \frac{\binom{1-6^2}{1+6^2}}{\binom{1+6^2}{1+6^2}} = \dots = RHS$ $\frac{\binom{2t}{1+6^2}}{\binom{1}{1+6^2}} + \frac{\binom{1-6^2}{1+6^2}}{\binom{1+6^2}{1+6^2}} = \dots = RHS$ (Solve equations by scatching to t) Pg 89

Solve
$$2\cos x + 5inx = 1$$
, $0 \le x \le 2\pi$
Write in terms of 5:
 $2\left(\frac{1-b^2}{1+b^2}\right) + \frac{2b}{1+b^2} = 1 \implies \dots \implies 3b^2 - 2b - 1 = 0$
 $\Rightarrow b = 1$ or $b = -\frac{1}{3} \implies bon \frac{x}{2} = 1$ or $-\frac{1}{3}$
 $\implies b = 1$ or $b = -\frac{1}{3} \implies bon \frac{x}{2} = 1$ or $-\frac{1}{3}$
 $\implies b = 1$ or $b = -\frac{1}{3} \implies b = 1$ or $-\frac{1}{3}$

Check also for solutions where $ton(\frac{x}{2})$ has asymptotes $2cos\pi + sin\pi = -2 + 0 = -2 \neq 1 \Rightarrow \pi isn'b a solution$

Example (Hidden half angles) pg 90
Show
$$\frac{d}{dx}(2+\cos x + 15\sin(\frac{x}{2})) = (1-t^2)(15t^2-8t+15)$$
, $t=ton \frac{x}{4}$
Differentiate first:
 $\frac{d}{dx}(2+\cos x + 15\sin(\frac{x}{2})) = -\sin c + \frac{15}{2}\cos \frac{x}{2}$ double on the formula
 $\frac{d}{dtx} = -2\sin c + \frac{15}{2}\cos \frac{x}{2}$ double on the formula
 $= -2\left(\frac{2t}{1+2t^2}\right)\left(\frac{1-t^2}{1+t^2}\right) - \frac{15}{2}\left(\frac{1-t^2}{1+t^2}\right) = \dots = RHS$
 $(t=ton \frac{x}{4})$

FPMI
L-formulae
Weierstrass Substitution
Use substitution

$$t = bon(\frac{x}{2}) \Rightarrow x = 2 \operatorname{orctonb}$$
 formulas
 $t = bon(\frac{x}{2}) \Rightarrow x = 2 \operatorname{orctonb}$ formulae
 $y = dx = \frac{2}{1+t^2} \Rightarrow dx = \frac{2}{1+t^2} \operatorname{oth}$
Example P990 (Integral substitution, find $\int \frac{1}{1+\frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2}} \operatorname{oth} \frac{1}{1+t^2}$
By using appropriate substitution, find $\int \frac{1}{1+\frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2}} \operatorname{oth} \frac{1}{1+t^2}$
 $I = \int (\frac{1}{1+\frac{1}{2}}) \left(\frac{2}{1+t^2}\right) dt = \dots = \int \frac{1}{1+t} dt = -\ln |1-t| + c$
Example P390 (Integral substitution, find $\int \frac{1}{1+\frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2}} \operatorname{oth} \frac{1}{1+t^2}$
 $Example P390 (Integrals with limits) sece
Evaluate $\int \frac{1}{1+\frac{1}{2}} \operatorname{oth} \frac{1}{1+t^2} \left(\frac{2}{1+t^2}\right) dt$
 $ton(\frac{1}{2}) = ton\frac{1}{t} = \frac{1}{3}$
 $ton(\frac{1}{2}) = ton\frac{1}{t} = \frac{1}{3}$
 $ton(\frac{1}{2}) = ton(\frac{1}{t}) = \frac{1}{3}$
 $ton(\frac{1}{2}) = ton(\frac{1}{t}) = \frac{1}{3}$$

Taylor Series

Taylor Series (generalise idea of Maclowin Series) Maclourin series in powers of ∞ about $\infty=0$ Taylor series in powers of (x-c) about x=c $f(x) = f(x) + f'(x)(x - x) + \frac{f''(x)}{2!}(x - x)^{2} + \frac{f''(x)}{3!}(x - x)^{3} + \dots$ $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!}(x - x)^{n}$ (Example) detailed example given on page 92 Find the Taylor series of sinx about .x=TI up to and including term in $(x-\pi)^3$. Final solution: $\sin \infty = -(5c-\pi) + \frac{1}{2}(x-\pi)^3 + \cdots$ @ Find Toyor series of ex up to and including (x-1)³ (Example) pg 93 @ Use port a to approx. e1.3 @ What is the error in approx? $e^{x} = e\left(1 + (2 - 1) + (2 - 1)^{2} + (2 - 1)^{3} + ...\right)$ details (6) Approximate by substituting x=1.3 $e^{1.3} \approx e\left(1+(1.3-1)+(1.3-1)^2+(1.3-1)^3\right) = 1.3495e$ Actual value of et.3 is 3.669296... Error = 3.669296... - 1.3495e = 0.000975 (3sf)(Example) pg 93 By constructing an appropriate Taylor series for for fGC)=Tx, find an approximation for 19.5

 $f(\infty) = 3 + (\frac{32-9}{6}) - (\frac{32-9}{216})^2 + (\frac{3888}{3888})^2$ $\Rightarrow \sqrt{95} \approx 3 + \frac{0.5}{6} - \frac{0.5^2}{216} + \frac{0.5^3}{3888} = 3.68221 (5dp)$

this approximation is correct to 5 d.p. it is accurate because ac was sufficiently close to c

FPMI

Limits

FPMI

How do we deal with expressions in the form

$$\frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{0}{0}$$

A possible solution: use known series expansions to find solutions

Example pg 94

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2 e^{2x}} = \lim_{x \to 0} \frac{1 - (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots)}{x^2 (1 + 2x + \frac{2^2x^2}{2!} + \frac{2^3x^3}{3!} + \dots)} = \frac{1}{x \to 0}$$

$$= \dots = \lim_{x \to 0} \frac{\frac{1}{2!} - \frac{x^2}{4!} + \dots}{1 + 2x + \frac{2^2x^2}{2!} + \dots} = \frac{\frac{1}{2!} - 0 + \dots}{1 + 0 + 0 + 0 + \dots} = \frac{1}{2}$$

$$(L'Hospibal's Rule)$$
If $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x)$ are both 0 or $\pm \infty$, then
if $\lim_{x \to c} f(x)$ and $\lim_{x \to c} g(x) = \lim_{x \to c} \frac{f'(x)}{g'(x)}$
For examples see pages 94 & 95 pgs 94 & 95

Examples pgs 96 and 97

 $V^{(1)}(x) = \frac{1}{x}$ $u^{(1)}(x) = 3x^2$ $V^{(2)}(x) = -\frac{1}{2x^2}$ $u^{(2)}(x) = 6x$ $(uv)^{(2)}(x) = \binom{2}{6} u^{(0)}(x) v^{(2)}(x) + \binom{2}{1} u^{(0)}(x) + \binom{2}{2} u^{(0)}(x) + \binom$ $= 1 \times (x^{3}) \left(\frac{-1}{x^{2}} \right) + 2 \times (3x^{2}) \left(\frac{1}{x} \right) + 1 \times (6x) \ln x$ $= -x + 6x + 6x \ln x = x (5 + 6 \ln x)$

Leibnitz's Theorem v(x) = ln(x) $U(x) = x^3$ $x a = (x)^{(0)} V$ $U^{(0)}(x) = x^3$

(Example) pg 96 Calculate 2nd derivative of x3 lax using

Note: $f_{(0)}(\infty) = f(\infty)$ $\binom{u}{n} = C^{-1} = \frac{U_{1}(U-U)}{U_{1}}$

is: $(uv)^{(n)}(x) = \sum_{r=0}^{\infty} {n \choose r} u^{(r)} \sqrt{nr} (sc)$

Leibitz's Theorem is an extension of Product Rule For functions 4 and 4, the nth derivative of 44

Leibnitz's Theorem

Taylor Series & Differential Equations

Solve Differential Equations using a Series Solution
Differential equations with non-constant co-efficients
(eq
$$\frac{d^2y}{dx^2} = x \frac{dy}{dx} + y$$
) can be solved using a
non-constant Taylods series actually $y(x)$, for DE at $x = C$:
Taylor Series, $y(x) = y(x) + y'(y)(x, x)^2 + \frac{y'(x)}{3!}$
 $x = \frac{1}{3} + \frac{$

Reducible Differential Equations

 $\Rightarrow \operatorname{arctanh}(\omega) = \mathcal{I} + C$

 $\Rightarrow [1+x-y] = bon h(x+c)$

 $\Rightarrow y = 1 + x - banh(x + c)$

 \Rightarrow $\omega = bonh(x+c)$

AE is 12-42+3=0

 $V^{1} - \frac{5}{2}V = 2c^{2}$, Multiply through by: $I(x) = e^{-\frac{5}{2}dx} - \frac{5}{2}dx = x^{5}$

 $\Rightarrow (\lambda - 1)(\lambda - 3) = 0$ $\Rightarrow \lambda = 1 \text{ or } \lambda = 3$

Use a Substitution to Transform a DE into something

O use given <u>substitution</u> to transform DE into a

3 Give general solution of original equation by

Use substitution $\omega = 1 + x - y$ to solve $\frac{dy}{dx} = (1 + x - y)^2$.

(Example (including Awiliary Equation Method) pg100

Example (including Integrating Factor Method) pg 100

(Example (including Auxiliary Equation Method) pg 101

 $\Rightarrow x^{-3} x = \beta e^{-5} x^2 dx = \int x^3 dx = -\frac{1}{2} x^2 + C$

Solve $\frac{d\omega}{dx} = 1 - \omega^2 \Rightarrow \int \frac{d\omega}{1 - \omega^2} = \int dx$

new one with a new variable.

 $0 \quad \omega = 1 + x - y \Rightarrow \frac{d\omega}{dx} = 1 - \frac{dy}{dx} = 1 - \frac{\omega^2}{dx}$

2) Solve (egusing AE or IF)

using <u>substitution</u> again.

Recall: Auxiliary Equation Method

 \Rightarrow y = Ae^{3t} + Be^t

Integrating Factor Method

 $\frac{d^2y}{dt^2} - 4\frac{dy}{dt} + 3y = 0$

Solvable, Three Steps:

(Example)

2

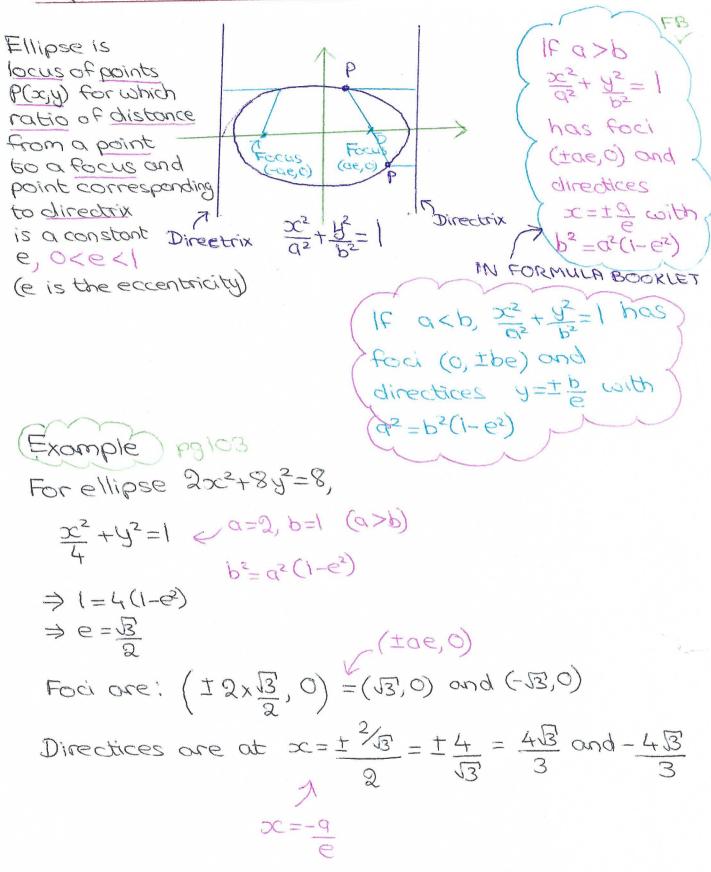
3

Parabolas, Ellipses and Hyperbolas

Conics can be described as porobolas, ellipses and hyperbolas. These are different types of curve you could make if you cut through a solid cone one can describe contes with Carbeston equations parametric equations or as a locus of points y= 4000 Cartesian Eqn Eccentricity = e = 1 This is ratio of Equation distance from $(y-h)^2 = 4q(x-k)$ any pt Pon Each point on the porchola is the same distance away from the directrix and focus porobola to shifts parabola by focus and directrix h up and kright ^CFocus (0,0) arabolas 1 paraibola is locus of points Placy) Directrix such that distance from focus is some as distance from directrix. FB/ Brametric Equations: $DC = at^2$, y = 2atExample pg 102 Focus (1/2,0) and Directrix oct 1/2=0 has eqn. y= 2x Example) Pg 102 Equation $y^2 = 12Gc-D$ has focus (4,0) and directrix x=2 Example) pg102 1/2=122 has focus (3,0) and directrix pc=-3 This can be deduced from: $y^2 = 12(x-1)$ is a translation 1 to the right of $y^2 = 12x$ MINOF AXIS a>b Ellipses 6 Carbesian Eqn $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ a Ellipses FBJ Parametric Egns: DC=acost, y=bsint Majo-Axis Example details of calculations pg 103 a <b x2+y2=1 has parametric Ellipse Minor Axis eqns $x = 6\cos\theta, y = 4\sin\theta$ $A = point P(0, y_i)(y_i > 0), y_i = 4 sin 0$

Parabolas, Ellipses and Hyperbolas

Ellipses have two Foci and two Directices



FPMI Parabolas Ellipses and Hyperbolas

Hyperbolas are related to Hyperbolic Functions
For a hyperbola
(artesion equation :
$$\boxed{x^2 - y^2}_{a^2} = \boxed{x^2}_{a^2}$$

Parametric equations: $\boxed{x = asect, y = b \text{ bont}}_{a^2}$
Parametric equations: $\boxed{x = asect, y = b \text{ bont}}_{a^2}$
Prese trace out
 $x = acosht, y = bsinht$
 $y = bsinht$

Example ps 104 A hyperbola C has equation $\frac{3c^2}{100} - \frac{y^2}{25} = 1$ $\Rightarrow \boxed{a=10}$ $\boxed{b=5}$. Since $\boxed{b^2=0}(e^2-1)$, we have $\boxed{5+10}(e^{1})$ $\Rightarrow \boxed{e=15}$ Foci at $(\boxed{00}, 0)$ and $(-\boxed{00}, 0)$ \Rightarrow Foci at $(\boxed{10}(e^2), 0)$ and $(-\boxed{10}(e^2), 0)$ \Rightarrow Foci at (5, 5, 0) and (-5, 5, 0)Directrices at $x = \frac{10}{6}$ \Rightarrow Directrices of x = 1 $\boxed{6} = \frac{10}{5} = \frac{14}{5}$

Special Case: Rectangular Hyperbolas have Perpendicular Asymptotes When a=b in $\frac{x^2}{q^2} - \frac{y^2}{b^2} = 1$, use have $x^2 - y^2 = a^2$ 3 $XY=C^2$ $x^2y^2=a^2$ Let X=x+y 4=-X Y=x-9

This allows you to rotate the graph so the asymptotes become the (new axes

Carbesian Egn

Directrices at x+y=150

 $xy=c^2$

Parametric Eqns | x=ct, y=c VEB PSIOS Eccentricity = e = 12Foci at (±12c,±12c)

Can be derived from fact and denectatives of yeneral parabola with a=b, USing the above co with (Example) pg 104 @ For parabola with equation $y^2 = 4ax$, use implicit differentiation to find dy : $(y^2 = 4ax)$ $\Rightarrow \frac{dy}{dy} = \frac{2q}{y}$ $2y \frac{dy}{dx} = 4\alpha \Rightarrow \frac{dy}{dx} = \frac{4\alpha}{2y} = \frac{2\alpha}{3}$ () If parabola has eqn y=16x and the line y=2 crosses C at point P. Find the eqn of the normal to Cat P. $-y^2 = 160c$ At point P, y=2, y=16x 4 = 1600=> x=K XK =) Compare eqn of C with general eqn in @: 4a=16= Q=4 At $P(\Xi, Z)$, gradient of C is $(\frac{dy}{dx} = \frac{2x4}{2} = 4)$ Normal has gradient $-1 \div 4 = -\frac{1}{L}$ Equation of normal: $y - \overline{y_1} = m(x - \overline{x_1})$ $\Rightarrow y - Q = -\frac{1}{4} \left(x - \frac{1}{4} \right) \Rightarrow y = -\frac{1}{4} x + \frac{33}{16}$ (Example) pglob Finding bangent to ellipse at a point (Example 19106 Finding eqn for normal to hyperbola at a point. (Example 19107 Gradient of line formed by connecting two

points on an ellipse.

Use Implicit Differentiation or the Chain Rule for Conics

langents and Normals to Curves

Loci Problems

Deriving Carbesian Equations for Conics from Loci

Loci problems Might involve chord (Example pg108 An ellipse has eqn $x^2 + \frac{y^2}{1} = 1$. Chord PQ of ellipse has gradient -1. As P and Q vary, locus of the midpoint M of chord is a straight line. Find eqn for this locus. () Chord : straight line with gradient -1 Let eqn of chord PQ be y=-x+c) 2 Endpoints of chord satisfy both eqn of chord and eqn of ellipse. Substitute eqn y=-x+c into eqn of ellipse, 20-00-ordinates of endpoints are roots of $\chi^{2} + (-\chi + c)^{2} = 1 \implies ... \implies 5\chi^{2} - 2c\chi + c^{2} - 4 = 0$ edu ; (3) Let x_1, x_2 be roots of this quadratic, $|et M = (X,Y) \Rightarrow X = \frac{x_1 + x_2}{2}$ For a quadratic, $ax^2 + bx + c = 0$, sum of roots $= -\frac{b}{c}$ $\therefore x_1 + x_2 = \frac{2c}{5} \Rightarrow x = \frac{c}{5} \Rightarrow c = 5x$ @ Midpoint (X,Y) lieson chord, so Y=-X+c Substituting in the expression for c gives: (Example) PS109 Use Trig Identities to Eliminate $\gamma = -X + 5X \Rightarrow \gamma = 4X$

FPMI

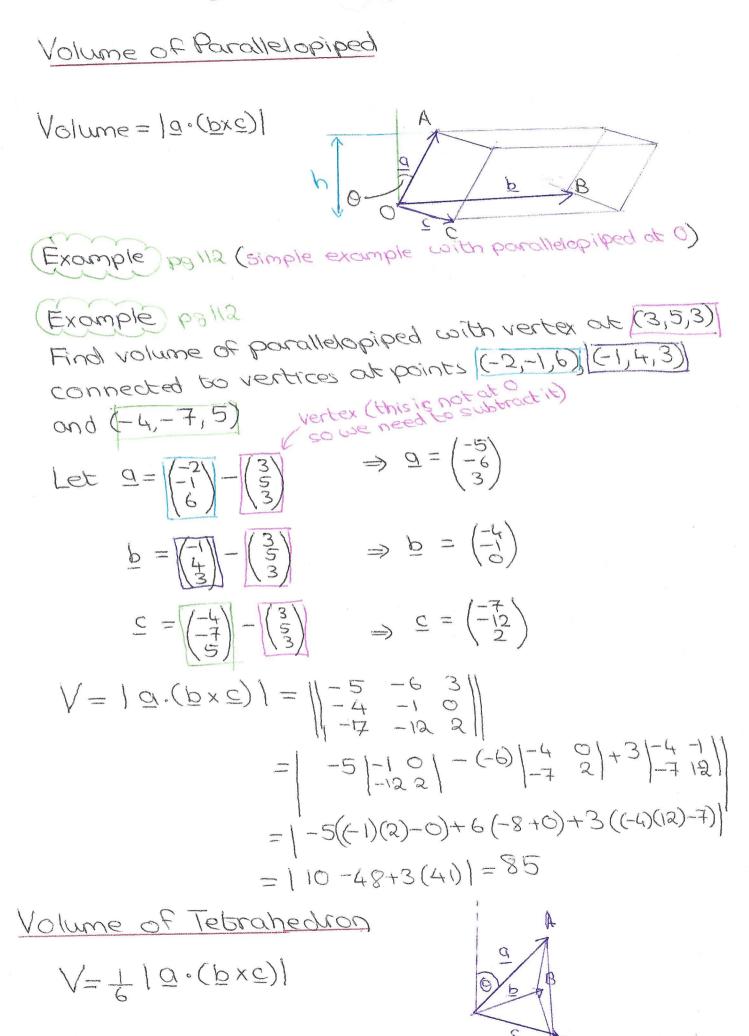
Loci Problems

(4)

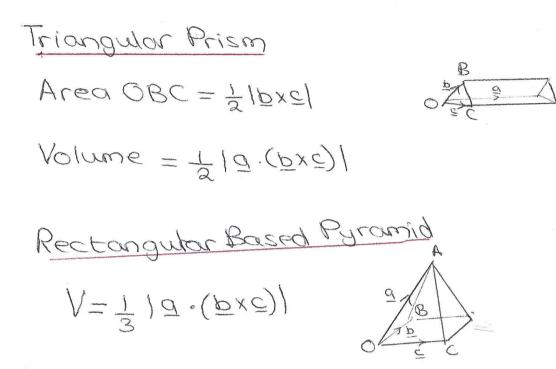
Hyperbold C with eqn 22-y=1

(5)

Scalar Triple Product



FPMI

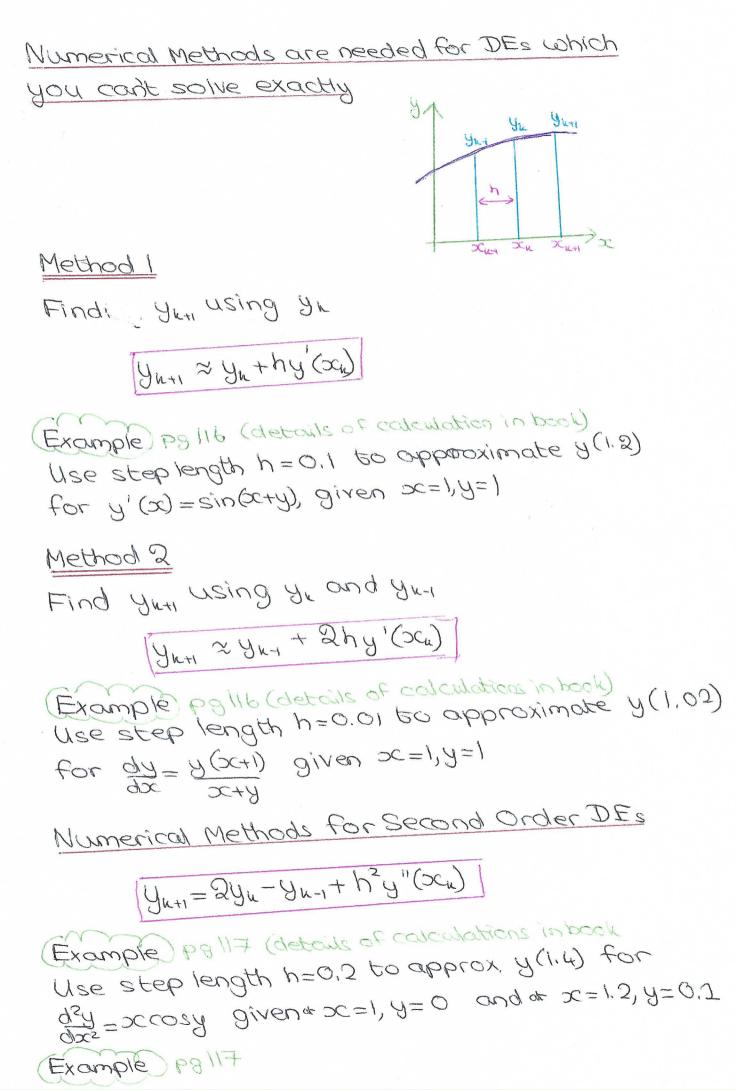


More 3D Geometry

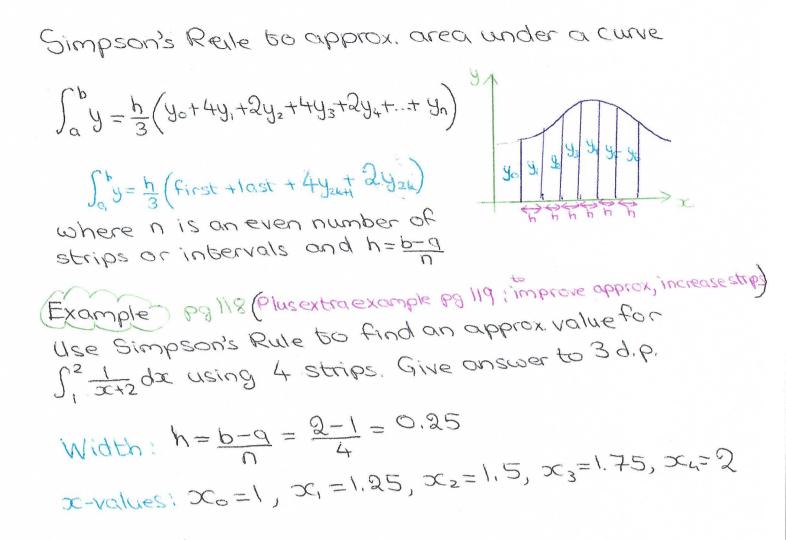
S

Direction Ratios and Direction Cosines (Norm you)
if Two Lines are forglief
Let
$$\Gamma_{i} = (2 + \lambda)$$
 vector eqn of straight lines
 $g = \begin{pmatrix} a_{i} \\ a_{i} \end{pmatrix}, \quad b = \begin{pmatrix} b_{i} \\ b_{i} \end{pmatrix}$
 $f_{i} = d + \lambda b$ vector eqn of straight lines
 $g = \begin{pmatrix} a_{i} \\ a_{i} \end{pmatrix}, \quad b = \begin{pmatrix} b_{i} \\ b_{i} \end{pmatrix}$
 $f_{i} = and \Gamma_{2}$ are parallel if $g \times b = 0$.
 $g = a_{2} = b_{2}, \quad a_{3} = b_{1}, \quad a_{4} = b_{4}, \quad a_{4} = b_{4}, \quad a_{5} = b_{4}, \quad a_{5} = b_{5}, \quad a_{5} = a_{5}, \quad a_{5} = b_{5}, \quad a_{5} = a_{5}, \quad a_{5} = a_{5$

More 3D Geometry



Simpson's Rule



Table

x	$y = \frac{1}{x+2}$
X0=1	Y0=7
$x_1 = 1.25$	$y_1 = \frac{1}{3.25}$
$x_2 = 1.5$	$y_2 = \frac{1}{3.5}$
$x_3 = 1.75$	$y_3 = \frac{1}{3.575}$
Xy=2	$y_{4} = \frac{1}{4}$

Formula $\int_{1}^{2} \frac{1}{x+2} dx = \frac{h}{3} \left[y_{0} + 4(y_{1} + y_{3}) + 2y_{2} + y_{4} \right]$ $= \frac{0.25}{3} \left[\frac{1}{3} + 4\left(\frac{1}{325} + \frac{1}{3.75} \right) + \frac{2}{3.5} + \frac{1}{5} \right]$ = 0.288 (3dp)

Calculate Error (if required) Exact answer = $[ln(x+2)]_{i}^{2} = ln 4 - ln 3 = 0.288(3dp)$ Error is 0 to 3 dp. => Simpson's rule gives good approx Algebraic Inequalities

23)

For algebraic inequalities, add and subtract to get Zero on one side

Steps to solve inequalities:
(1) all terms on one side, (2) on the other
(2) find critical values where
$$f(x)=0$$

(3) either shetch graph or test values on
either side of c.v. to see where inequality
is true.

$$\begin{aligned} & (Example) p_{3} 120 \\ & x^{2} (x+3) > 4 (x+3) \\ \Rightarrow x^{2} (x+3) - 4 (x+3) > 0 \\ \Rightarrow \dots \Rightarrow (x+3) (x+2) (x-2) > 0 \\ cv: x = -3, x = -2, x = 2 \\ & raph +ve for -3 < x < 2 or x > 2 \\ & Multiply by Square of all Denominators \\ & (x-u)^{2} (x+1)^{2} \geqslant \frac{2}{x+1} \Rightarrow \frac{x}{x+4} \\ & Rend text book for complete example \\ & Squaring helps with modulus signs \\ & If (f(x)) > Ig(x)] \Rightarrow |f(x)|^{2} > |g(x)|^{2} \\ & (x+2)^{2} \geqslant |x^{2}-4| \Rightarrow (x+2)^{2} \geqslant (x^{2}-4)^{2} \\ & Use Graphs to Find solutions of |f(x)| > g(x) \\ & (x+2) \geqslant x^{2}-4 \\ & (x+2) \geqslant x^{2}-4 \end{aligned}$$